Red Bridge Road Subdivisions Kittitas County, WA

Traffic Impact A nalysis

O ctober 17, 2007

Prepared for:

Gleason Properties
PO Box 1321
Maple Valley, WA 98038

Prepared by:

() Transportation Engineering N orthWest, LLC

Table of Contents

FINDINGS AND CONCLUSIONS 1
INTRODUCTION 2
Project Description 2
EXISTING CONDITIONS 5
Roadway Conditions 5
Collision History 5
Existing Traffic Volumes 6
Intersection Level of Service 6
Nonmotorized Transportation Facilities 9
Planned Roadway Improvements 9
TRANSPORTATION IMPACTS 10
Non-Project Traffic Forecasts 10
Project Trip Generation 10
Trip Distribution and Assignment 10
Traffic Volume Impacts 12
Intersection Level of Service Impacts. 12
Nonmotorized Transportation Facilities 12
Site Access, Safety, and Circulation Issues 14
MITIGATION MEASURES 14
Appendix A - Traffic Counts
Appendix B - Detailed Level of Service Summary Sheets
Appendix C - Future Traffic Volume Estimates

List of Figures and Tables

Figure 1: Project Site Vicinity 3
Figure 2: Proposed Site Plan 4
Figure 3: Existing Channelization and Traffic Control 7
Figure 4: 2007 Existing Daily and P.M. Peak Hour Traffic Volumes 8
Figure 5: Project Trip Distribution 11
Figure 6: 2027 Daily and P.M. Peak Hour Traffic Volumes Impacts 13
Table 1: January 1, 2004 - December 31, 2006 Historical Collision Rates 6
Table 2: Unsignalized Intersection Level of Service Measures 9
Table 3: Existing 2007 P.M. Peak Intersection Level of Service 9
Table 4: Project Trip Generation 10
Table 5: 2027 P.M. Peak Intersection Level of Service Impacts 12

FINDINGS AND CONCLUSIONS

Project Proposal. Full build-out of the Red Bridge Road Subdivisions would consist of four separate residential plats with up to 14 single-family homes sites (56 single-family homes in total), located on the south side of Red Bridge Road in Kittitas County, WA. The individual plats, including Gleason, Cameron, Fremmerlid and Taylor, are adjoining parcels that would be developed in coordination such that roadway and other infrastructure would connect to one another and provide a total of two access connection points onto Red Bridge Road.

Trip Generation. The Red Bridge Road Subdivisions are estimated to generate approximately 610 daily and 64 p.m. peak hour vehicular trips at full build-out and occupancy of all 56 single-family homes.

Study Roadway Operations. Daily traffic demand due to the proposed developments on SR 970 would increase by approximately 100 vehicles west of SR 10 and less than 50 vehicles east of Teanaway Road in 2027. SR 10 daily traffic volumes would increase by less than 50 vehicles in 2027 with the project. These State highway arterials are designed to carry this additional traffic demand. Red Bridge Road west of the site is forecasted to experience an increase of approximately 500 daily vehicles, while Red Bridge Road east of the properties and Teanaway Road south of Red Bridge Road would experience an increase of approximately 100 daily vehicles. While these County roadways would experience a high proportional increase in traffic demands based on historical levels, total average daily traffic (ADT) would not exceed 700 ADT on either Red Bridge Road or Teanaway Road, well within acceptable traffic loads of these rural roadways.

Off-Site Study Intersection Operations. All off-site study intersections are anticipated to operate at LO S C or better with the proposed development in 2027.

Nonmotorized Transportation Impacts. The applicants would be required to fully fund and construct the necessary frontage improvements onto Red Bridge Road.

Site Access Impacts. Vegetation should be removed along the property frontage of Red Bridge Road to maximize sight distance to the west of the proposed site access roadway.

Mitigation Measures. The applicants would be required to fully fund and construct the necessary frontage improvements, site access connections onto Red Bridge Road, and internal roadways connecting for future extension to three adjacent residential pipeline developments. The applicants may also have to contribute approximately 8.4 percent of a proportional fair share (total share of all four plats) toward future turn lane improvements warranted on SR 907 at Red Bridge Road.

INTRO DUCTION

This study summarizes traffic impacts associated with the Red Bridge Road subdivisions, a combined buildout of 56 single-family homes on four separate, but adjacent residential plats located on the south side of Red Bridge Road in Kittitas County, WA. Based on our discussions with Kittitas County and the County's Traffic Impact A nalysis Requirements, the following tasks were undertaken to analyze traffic impacts associated with the proposed action:
> Assessment of existing conditions through field reconnaissance and review of existing planning documents.
$>$ Estimation of weekday vehicular daily and p.m. peak hour trips generated by the proposed action.
> Assignment of weekday daily and p.m. peak hour project trips onto the existing roadway network in the immediate vicinity.
$>$ Evaluation of p.m. peak level of service (LOS) impacts at the following study intersections:

1. SR 970 / SR 10
2. SR 970 / Red Bridge Road
3. SR 970 / Teanaway Road
4. Red Bridge Road / Teanaway Road
5. Red Bridge Road / M asterson Road
> Evaluation of nonmotorized facilities and site access, safety, and circulation issues.
> Identification of mitigation measures to maintain acceptable levels of mobility and safety based upon Kittitas County and the Washington State D epartment of Transportation (WSD OT) standards and guidelines.

Project Description

This study summarizes traffic impacts associated with the Red Bridge Road subdivisions, a combined buildout of 56 single-family homes on four separate, but adjacent residential plats located on the south side of Red Bridge Road in Kittitas County, WA. The individual plats, including Gleason, Cameron, Fremmerlid and Taylor, are adjoining parcels that would be developed in coordination such that roadway and other infrastructure would connect to one another and provide a total of two access connection points onto Red Bridge Road. The Gleason plat is expected to be developed first (within the next several years). Subsequent buildout of remaining plats is currently not known. Therefore, for the purpose of this analysis, the year 2027 was selected as the build-out year for full completion of the project per Kittitas County 20-year protected traffic forecast requirements.

A project site vicinity map is shown in Figure 1, and a site plan for the Gleason Plat is illustrated in Figure 2.

EXISTING CONDITIONS

This section describes existing transportation system conditions in the study area. It includes an inventory of existing roadway conditions, collision history, traffic volumes, intersection levels of service, nonmotorized transportation facilities, and planned roadway improvements.

Roadway Conditions

The following paragraphs describe existing arterial roadways that would be used as major routes for site access. Roadway characteristics are described in terms of facility type, number of lanes, posted speed limits and shoulder types and widths.

SR 970 is classified by WSDOT as a two-lane, rural principal arterial. Travel lanes are approximately 12 feet with 4 -to 8 -foot paved shoulders. The speed limit is posted at 55 mph west of and 60 mph east of Masterson Road / Seaton Road.

Red Bridge Road is a two-lane unchannelized roadway. The roadway is paved and approximately 27 feet in width, with 0 - to 4 -foot gravel shoulders. The posted speed limit is 25 mph.

SR 10 is classified by WSDOT as a two-lane, rural collector arterial. Travel lanes are approximately 10 to 12 feet with 2-to 10 -foot bituminous concrete shoulders. The speed limit is posted at 55 mph .

Teanaway Road is a two-lane unchannelized roadway with 11- to 12-foot travel lanes and 2- to 6 -foot gravel shoulders. The speed limit is posted at 50 mph .

Collision History

The frequency and severity of collisions are commonly weighted against the speed, volume, and functional classification of a roadway segment or intersection. These variables are considered in determining if a certain location has an unusually high collision rate or unsafe condition.

The average annual collision rate is calculated by summing the total number of collisions that occurred at a specified intersection or roadway segment during the past three years, and dividing the total by three. Collision data for an intersection is also measured by collision rates per million entering vehicles (MEV). Collisions per MEV reflect the number of vehicles traveling through an intersection, providing a different indication of design-related versus volume-related incidences.

Table 1 summarizes historical collision data as provided by the WSD OT for the most recent 3year period between January 1, 2004 and December 31, 2006 at all study intersections. There were no reported collisions at the intersection of SR 970 at Masterson Road / Seaton Road or SR 970 at Teanaway Road. There was only 1 reported collision at the SR 970 at SR 10 intersection, which has a 0.19 per MEV. There have been no fatal accidents during the most recent three-year period of collision record data.

On Kittitas County roads, there have only been 3 reported collisions since 2004 on Teanaway Road (1 reported collision in 2007) and Red Bridge Road (two reported collisions; 1 in 2004 and 1 in 2007), none of them occurring at intersections. Thus, there are no safety issues in the immediate site vicinity.

Table 1: January 1, 2004 - December 31, 2006 Historical Collision Rates

ID							
$\#$	Intersections	Fatal Collisions	Injury Collisions	PDO Collisions	Total Collisions	A verage A nnual Collision Rate	Collision Rate per MEV
1	SR 970 at SR 10	0	1	0	1	0.3	0.19

Source: WSD OT standard Accident History Detail Report, Data Collected August 2007. No reported collisions at the intersections of SR 970 and Master Road/ Seaton Road and SR 970 at Teanaway Road.
MEV - Million entering vehicles.

Existing Traffic Volumes

Average weekday daily traffic volumes (AWDT) represent the number of vehicles traveling a roadway segment over a 24 -hour period on an average weekday. Peak hour traffic volumes represent the highest hourly volume of vehicles passing through an intersection during a typical 4-6 p.m. weekday peak period. Figure 3 illustrates existing channelization and traffic control at the study intersections. Figure 4 summarizes existing daily and p.m. peak hour traffic volumes.

Daily traffic volumes were obtained from WSD OT. All Traffic D ata Services, Inc. conducted p.m. peak period turning movement counts at all study intersections in July 2007 (traffic counts provided in Appendix A). Historical traffic volumes on SR 970 indicate a 2 percent per year background growth rate. Thus, all traffic counts not counted in the year 2007 were factored by 2 percent per year to estimate year 2007 existing conditions.

Intersection Level of Service

Level of service (LOS) serves as an indicator of the quality of traffic flow at an intersection or road segment. The LO S grading ranges from A to F , such that LOS A is assigned when minimal delays are present and low volumes are experienced. LOS F indicates long delays and/ or forced flow. Table 2 summarizes the delay range for each level of service at unsignalized intersections. The methods used to calculate the levels of service are described in the updated 2000 Highway Capacity M anual (Special Report 209, Transportation Research Board).

For unsignalized intersections, a level of service and estimate of average control delay is determined for each minor or controlled movement based upon a sequential analysis of gaps in the major traffic streams and conflicting traffic movements. In addition, given that unsignalized intersections create different driver expectations and congestion levels than signalized intersections, their delay criteria are lower. Control delay at unsignalized intersections include deceleration delay, queue move-up time, stopped delay in waiting for an adequate gap in flows through the intersection, and final acceleration delay. The H ighway Capacity Software (version 4.1f) was used to evaluate levels of service at unsignalized intersections.

Table 2: Unsignalized Intersection Level of Service M easures

Level of Service	Unsignalized Intersection Delay Range (sec)
A	≤ 10
B	>10 to ≤ 15
C	>15 to ≤ 25
D	>25 to ≤ 35
E	>35 to ≤ 50
F	≥ 50

Source: "Highway Capacity Manual", Special Report 209, Transportation Research Board, 2000, Update.
Table 3 highlights existing 2007 p.m. peak hour levels of service at study intersections. As shown, critical stop controlled movements at all study intersections currently operate at LOS B or better. D etailed level of service summary sheets are provided in Appendix B.

Table 3: Existing 2007 P.M. Peak Intersection Level of Service

U nsignalized Intersections	Traffic Control Movement	LO S	A verage Delay (seconds)
\#1-SR 970 at SR 10	Westbound Left	A	8
	N orthbound	B	11
\#2 - SR 970 at Red Bridge Road	Eastbound Left	A	8
	Westbound Left	A	8
	N orthbound	B	12
	Southbound	A	9
\#3 - SR 970 at Teanaway Road	Eastbound Left	A	8
	Southbound	B	10
\#4 - Red Bridge Road at Teanaway Road	Eastbound	A	8
	N orthbound Left	A	8
\#5 - Red Bridge Road at M asterson Road	Eastbound Left	A	8
	Southbound	A	8

1 - Analysis based on HCS 2000results using HCM 2000 control delays and LOS.

N onmotorized Transportation Facilities

Gravel shoulders are provided on Red Bridge Road and Teanaway Road/ Seaton Road. Paved shoulders are provided on SR 970. SR 10 consists of bituminous concrete shoulders.

Planned Roadway Improvements

A review of Kittitas County's 2007-2027 Six-Y ear Transportation Improvement Plan identified no transportation capacity related improvements in the project site vicinity that would be impacted by project trips.

TRAFFIC IMPACTS

The following section describes transportation impacts the proposed project would have on the surrounding arterial network. The discussion includes non-project related traffic forecasts, new trips generated by the proposed development, distribution and assignment of new project trips, impacts on roadways, levels of service, nonmotorized facilities, and site access, safety, and circulation issues.

N on-Project Traffic Forecasts

For the purpose of this traffic analysis, year 2027 was selected as the build-out year based upon Kittitas County 20 -year protected traffic forecast requirements. As mentioned previously, to estimate future traffic volumes, existing traffic counts were factored by 2 percent per year to estimate 2027 "baseline" without project conditions.

In addition, traffic volumes from vicinity pipeline projects include the following: approximately 204 single-family residential homes feeding onto Columbia Avenue at SR 903 within Cle Elum, were used in addition to the background traffic growth rate to estimate 2027 traffic volumes along SR 970 without the Red Bridge Road Subidivision (future year traffic volume forecast estimates are provided in Appendix C).

Project Trip Generation

Trip generation rates compiled by the Institute of Transportation Engineers (ITE) Trip G eneration Manual, $7^{\text {th }}$ Edition, 2003, were used to estimate daily and p.m. peak hour vehicular trip generation by the proposed development using fitted curve equations for Single-Family D etached Housing (ITE land use code 210).

Table 4 summarizes estimated trip generation by the proposed subdivisions (56 lots in total). An estimated total of 610 daily and 64 p.m. peak hour vehicular trips (40 entering and 24 exiting) would be generated at full build-out.

Table 4: Project Trip Generation

Land U se		P.M. Peak Trip Generation			Daily Trip
		56 DU	40	24	64

Source: ITE Trip G eneration M anual, $7^{7 \mathrm{~h}}$ Edition, 2003, for ITE Land Use Code 210.
1 - DU is D welling Unit.

Trip Distribution and Assignment

Based upon existing traffic volumes and the regional employment distribution within the area, traffic volumes generated by the proposed action would be distributed as follows (also shown in Figure 5):
> 75 percent westerly and 20 percent easterly via SR 970; and
>5 percent southerly via SR 10 .

Traffic Volume Impacts

Figure 6 summarizes future year 2027 daily and p.m. peak hour traffic volumes with and without the proposed development. Traffic volume calculations are provided in Appendix C. Daily traffic demand due to the proposed developments on SR 970 would increase by approximately 500 vehicles west of SR 10 and 100 vehicles east of Teanaway Road in 2027. SR 10 daily traffic volumes would increase by less than 50 vehicles in 2027 with the project. These State highway arterials are designed to carry this additional traffic demand. Red Bridge Road west of the site is forecasted to experience an increase of approximately 500 daily vehicles, while Red Bridge Road east of the properties and Teanaway Road south of Red Bridge Road would experience an increase of approximately 100 daily vehicles. While these County roadways would experience a high proportional increase in traffic demands based on historical levels, total average daily traffic (ADT) would not exceed 700 ADT on either Red Bridge Road or Teanaway Road, well within acceptable traffic loads of these rural roadways.

Intersection Level of Service Impacts

Table 5 summarizes level of service impacts due to the proposed development at all study intersections in 2027. As shown, little or no increase in vehicle delay would result due to the proposed action and all study intersections are anticipated to operate at LOS C or better with and without the project in 2027. Detailed level of service summary worksheets are provided in Appendix B.

Table 5: 2027 P.M. Peak Intersection Level of Service Impacts

U nsignalized Intersections	Traffic Control Movement	Without Project LOS	Without Project Delay (seconds)	With Project LOS	With Project Delay (seconds)
\#1 - SR 970 at SR 10	W estbound Left	A	8	A	8
	N orthbound	B	13	B	14
\#2 - SR 970 at Red Bridge Road Road	Eastbound Left	A	8	A	8
	W estbound Left	A	8	A	8
	N orthbound	B	14	C	15
	Southbound	A	9	A	10
\#3 - SR 970 at Teanaway Road	Eastbound Left	A	8	A	8
	Southbound	B	11	B	12
\#4 - Red Bridge Road at Teanaway Road	Eastbound	A	8	A	8
	N orthbound Left	A	8	A	8
\#5 - Red Bridge Road at M asterson Road	Eastbound Left	A	8	A	8
	Southbound	A	8	A	8

1- Analysis based on HCS 2000results using HCM 2000 control delays and LOS.

N onmotorized Transportation Facilities

The applicants would be required to fully fund and construct the necessary frontage improvements onto Red Bridge Road.

Site Access, Safety, and Circulation Issues

Vehicular site access is proposed via two new roadway connections onto Red Bridge Road, which would provide access for the Gleason Properties and 3 adjacent subdivision. The applicants would be required to fully fund and construct the necessary frontage improvements, site access connections onto Red Bridge Road, and internal roadways connecting all four residential developments.

The Gleason Properties property abuts SR 907. However, under W A C 468-52-040-2 - Highway A cess M anagement - A coess C ontrol Classification System and Standards, the project is not allowed to take direct access to the State Highway system as it does have alternative access via Red Bridge Road. As such, all vehicular access is proposed via Red Bridge/ Teanaway Road at established intersections with SR 907.

Sight D istance

The American Association of State and Highway Transportation Officials (AASHTO), A Policy on Geometric D esign of Highways and Streets, 2001, was used to determine sight distance requirements. AASHTO requires 335 feet of stopping sight distance and 200 feet of entering sight distance for a 30 mph design speed (5 mph over 25 mph posted speed limit) onto Red Bridge Road. Field-measured sight distances at the western site access roadway onto Red Bridge Road is approximately 350 feet to the west with the removal of property frontage vegetation and greater than 500 feet to the east. The eastern site driveway onto Red Bridge Road has fieldmeasured sight distances greater than 500 feet to the west and east. Therefore, the proposed site driveways onto Red Bridge Road would meet AASHTO sight distance requirements.

Turn-Lane Warrants

Left- and right-turn movements represent critical turning movements at unsignalized intersections, increasing the potential for intersection delay and safety issues. An evaluation of the potential need for a eastbound left-turns and westbound right-turn lanes along SR 907 was reviewed at Red Bridge Road during the weekday p.m. peak hour under 2027 with project conditions, with results summarized in Table 6. Turn lane warrants are based upon procedures and guidelines found in WSD OT's D esign M anual, January 2005.

Table 6: 2027 Left-Turn Lane Warrants at SR 907 / Red Bridge Road Intersection

Left-Turn Lane Warrant	Without Project	With Project
Eastbound Left-Turns	36	45
Total DHV (WB \& EB A pproach V olumes)	584	593
\% Total DHV Turning Left	6%	8%
V olume Warrant M et? 1	Yes	Yes
Posted Speed Limit $^{\text {Left-Turn Lane Length }^{2}}$	60	60

1 - Based on WSD OT's D exign M anual, January 2005, Figure 910-8a Left-Turn Storage G uidelines Two Lane-Unsignaized. 2 - Based on WSD OT's D esign M anual, January 2005, Left-Turn Storage Length (Two-Lane Unsignalized).

As shown, an eastbound left-turn lane at Red Bridge Road and SR 907 would be warranted in 2027 regardless of the project. The Red Bridge Road Subdivision's proportion share toward these improvements would be approximately 8.4 percent.

Forecasted westbound right turning movements at either the intersection of SR 970 and Red Bridge Road or Teanaway would be less than 20 vehicles per hour, and therefore, no right turn lane warrants would be triggered.

MITIGATION MEASURES

An analysis was conducted of vehicular trip generation, impacts on roadways and significant intersections, nonmotorized facilities, and site access, safety, and circulation issues. Based upon this traffic impact analysis, the following mitigation measures may be required:
$>$ The applicants would be required to fully fund and construct the necessary frontage improvements, site access connections onto Red Bridge Road, and internal roadways connecting all four residential developments.
$>$ Remove vegetation along the property frontage of Red Bridge Road to maximize sight distance to the west of the western site access roadway.
$>$ The applicants may have to contribute approximately 8.4 percent (in total) of a proportional fair share toward future turn lane improvements warranted on SR 907 at its Red Bridge Road intersection.

A ppendix A Traffic Counts

Peak Hour Summary

All Traffic Data

Mark Skaggs
(206) 251-0300
SR 10 \& SR 970
4:00 PM to 5:00 PM
Tuesday, July 31, 2007

Approach	PHF	HV\%	Volume
EB	0.90	3.7%	215
WB	0.81	4.7%	191
NB	0.88	0.0%	35
SB	0.00	0.0%	0
Intersection	0.93	3.9%	441

Total Vehicle Summary

SR 10 \& SR 970

Tuesday, July 31, 2007
Out 222

4:00 PM to 6:00 PM

15-Minute Interval Summary
4:00 PM to 6:00 PM

Peak Hour Summary
4:00 PM to 5:00 PM

By Approach	Northbound SR 10				Southbound SR 10			$\begin{aligned} & \text { Eastbound } \\ & \text { SR } 970 \end{aligned}$				$\begin{gathered} \text { Westbound } \\ \text { SR } 970 \end{gathered}$				Total
	In	Out	Total	HV				In	Out	Total	HV	In	Out	Total	HV	
Volume	35	56	91	0	0	0	0	215	222	437	8	191	163	354	9	441
\%HV	0.0\%				0.0\%			3.7\%				4.7\%				3.9\%
PHF	0.88				0.00			0.90				0.81				0.93

Rolling Hour Summary
4:00 PM to 6:00 PM

Total Vehicle Summary

Red Bridge Rd \& SR 970
Tuesday, July 31, 2007
4:00 PM to 6:00 PM

15-Minute Interval Summary
4:00 PM to 6:00 PM

Interval Start Time	Northbound Red Bridge Rd				Southbound Red Bridge Rd				$\begin{aligned} & \hline \text { Eastbound } \\ & \text { SR } 970 \end{aligned}$				Westbound SR 970				Interval Total
	L	T	R	HV													
4:00 PM	0	0	1	0	1	1	0	0	1	31	0	0	0	44	0	0	79
4:15 PM	0	1	0	0	0	0	1	0	3	39	0	0	2	53	0	0	99
4:30 PM	1	0	0	0	0	0	2	0	1	39	2	0	0	45	0	0	90
4:45 PM	0	1	0	0	0	0	4	0	1	41	0	0	0	27	0	0	74
5:00 PM	0	0	0	0	0	0	3	0	2	53	0	0	1	32	0	0	91
5:15 PM	0	0	1	0	0	2	1	0	5	41	0	0	0	36	1	0	87
5:30 PM	0	2	1	0	0	1	1	0	0	29	1	0	0	35	0	0	70
5:45 PM	1	0	0	0	0	0	1	0	3	32	0	0	1	23	0	0	61
Total Survey	2	4	3	0	1	4	13	0	16	305	3	0	4	295	1	0	651

Peak Hour Summary
4:15 PM to 5:15 PM

By Approach	Northbound Red Bridge Rd				Southbound Red Bridge Rd				$\begin{gathered} \text { Eastbound } \\ \text { SR } 970 \end{gathered}$				$\begin{gathered} \text { Westbound } \\ \text { SR } 970 \end{gathered}$				Total
	In	Out	Total	HV													
Volume	3	5	8	0	10	9	19	0	181	168	349	0	160	172	332	0	354
\%HV	0.0\%				0.0\%				0.0\%				0.0\%				0.0\%
PHF	0.75				0.63				0.82				0.73				0.89

By Movement	Northbound Red Bridge Rd				Southbound Red Bridge Rd				$\begin{gathered} \text { Eastbound } \\ \text { SR } 970 \end{gathered}$				$\begin{aligned} & \text { Westbound } \\ & \text { SR } 970 \end{aligned}$				Total
	L	T	R	Total													
Volume	1	2	0	3	0	0	10	10	7	172	2	181	3	157	0	160	354
PHF	0.25	0.50	0.00	0.75	0.00	0.00	0.63	0.63	0.58	0.81	0.25	0.82	0.38	0.74	0.00	0.73	0.89

Rolling Hour Summary
4:00 PM to 6:00 PM

Interval Start Time	Northbound Red Bridge Rd				Southbound Red Bridge Rd				$\begin{gathered} \text { Eastbound } \\ \text { SR } 970 \end{gathered}$				Westbound SR 970				Interval Total
	L	T	R	HV													
4:00 PM	1	2	1	0	1	1	7	0	6	150	2	0	2	169	0	0	342
4:15 PM	1	2	0	0	0	0	10	0	7	172	2	0	3	157	0	0	354
4:30 PM	1	1	1	0	0	2	10	0	9	174	2	0	1	140	1	0	342
4:45 PM	0	3	2	0	0	3	9	0	8	164	1	0	1	130	1	0	322
5:00 PM	1	2	2	0	0	3	6	0	10	155	1	0	2	126	1	0	309

Total Vehicle Summary

Teanaway Rd \& SR 970
Thursday, August 02, 2007
4:00 PM to 6:00 PM

15-Minute Interval Summary 4:00 PM to 6:00 PM

Interval Start Time Tim	Northbound Teanaway Rd				Southbound Teanaway Rd					$\begin{gathered} \text { Eastbound } \\ \text { SR } 970 \\ \hline \end{gathered}$				Westbound SR 970				Interval Total
					L			R	HV	L	T		HV		T	R	HV	
4:00 PM					1			4	0	8	37		1		31	2	8	83
4:15 PM					3			6	0	5	51		12		27	2	2	94
4:30 PM					1			3	0	6	53		3		33	1	4	97
4:45 PM					0			2	0	4	38		9		34	2	6	80
5:00 PM					1			1	0	2	33		5		51	0	12	88
5:15 PM					1			4	0	5	31		4		42	2	8	85
5:30 PM					3			4	0	3	37		4		40	0	10	87
5:45 PM					3			3	1	5	46		3		30	0	5	87
Total Survey					13			27	1	38	326		41		288	9	55	701

Peak Hour Summary
4:15 PM to 5:15 PM

By Approach	Northbound Teanaway Rd In Out Total			Southbound Teanaway Rd				$\begin{aligned} & \text { Eastbound } \\ & \text { SR } 970 \end{aligned}$				$\begin{gathered} \text { Westbound } \\ \text { SR } 970 \end{gathered}$				Total
				In	Out	Total	HV	In	Out	Total	HV	In	Out	Total	HV	
Volume	0	0	0	17	22	39	0	192	157	349	29	150	180	330	24	359
\%HV	0.0\%			0.0\%				15.1\%				16.0\%				14.8\%
PHF	0.00			0.47				0.81				0.74				0.93

By Movement	Northbound Teanaway Rd		Southbound Teanaway Rd			$\begin{gathered} \text { Eastbound } \\ \text { SR } 970 \end{gathered}$			Westbound SR 970			Total
		Total	L	R	Total	L	T	Total	T	R	Total	
Volume		0	5	12	17	17	175	192	145	5	150	359
PHF		0.00	0.42	0.50	0.47	0.71	0.83	0.81	0.71	0.63	0.74	0.93

Rolling Hour Summary

4:00 PM to 6:00 PM

Interval Start	Northbound Teanaway Rd			Southbound Teanaway Rd				$\begin{gathered} \hline \text { Eastbound } \\ \text { SR } 970 \end{gathered}$				$\begin{gathered} \hline \text { Westbound } \\ \text { SR } 970 \end{gathered}$				Interval Total
Time				L		R	HV	L	T		HV		T	R	HV	
4:00 PM				5		15	0	23	179		25		125	7	20	354
4:15 PM				5		12	0	17	175		29		145	5	24	359
4:30 PM				3		10	0	17	155		21		160	5	30	350
4:45 PM				5		11	0	14	139		22		167	4	36	340
5:00 PM				8		12	1	15	147		16		163	2	35	347

A ppendix B

Detailed Intersection Level of Service Summary Sheets

Approach	EB	WB	Northbound			Southbound		
Movement	1	4	7		9	10	11	12
Lane Config		LT		LR				
v (vph)		1		37				
C (m) (vph)		1318		643				
v/c		0.00		0.06				
95\% queue length		0.00		0.18				
Control Delay		7.7		10.9				
LOS		A		B				
Approach Delay				10.9				
Approach LOS				B				

HCS2000: Unsignalized Intersections Release 4.1f
\qquad TWO-WAY STOP CONTROL SUMMARY \qquad

Analyst:	JGT	
Agency/Co.:	TENW	
Date Performed:	10/16/2007	
Analysis Time Period:	PM Peak	
Intersection:	\#1 - SR 970 / SR 10	
Jurisdiction:	WSDOT/Cle Elum	
Units: U. S. Customary		
Analysis Year:	2027 Without Project	
Project ID: Gleason P	Properties	
East/West Street:	SR 970	
North/South Street:	SR 10	
Intersection Orientati	ion: EW	Study period (hrs) :

Minor Street:	Approach	Northbound				Southbound		
	Movement	7	8	9	10	11	12	
		L	T	R	L	T	R	

Volume	50	6			
Peak Hour Factor, PHF	0.93		0.93		
Hourly Flow Rate, HFR	53		6		
Percent Heavy Vehicles	0	0			
Percent Grade (\%)		0			
Flared Approach: Exists?/Storage		No	$/$		
Lanes	0	0			
Configuration		LR			

Approach	EB	WB	Northbound			Southbound		
Movement	1	4	7		9	10	11	12
Lane Config		LT		LR				
v (vph)		2		59				
C (m) (vph)		1178		489				
v/c		0.00		0.12				
95\% queue length		0.01		0.41				
Control Delay		8.1		13.4				
LOS		A		B				
Approach Delay				13.4				
Approach LOS				B				

HCS2000: Unsignalized Intersections Release 4.1f
\qquad TWO-WAY STOP CONTROL SUMMARY \qquad

Analyst:	JGT
Agency/Co.:	TENW
Date Performed:	$10 / 16 / 2007$
Analysis Time Period: PM Peak	
Intersection:	\#1 - SR 970 / SR 10
Jurisdiction:	WSDOT/Cle Elum
Units: U. S. Customary	
Analysis Year:	2027 With Project
Project ID: Gleason Properties	
East/West Street:	SR 970
North/South Street:	SR 10
Intersection Orientation: EW	

Study period (hrs): 0.25

Minor Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	Northbound			Southbound			
	7	8	9	10	11	12	
	L	T	R	L	T	R	
Volume	50		7				
Peak Hour Factor, PHF	0.93		0.				
Hourly Flow Rate, HFR	53		7				
Percent Heavy Vehicles Percent Grade (\%)	0		0				
					0		
Percent Grade (\%) Flared Approach: Exists?/Storage		0	No	/			/
Lanes	0		0				
Configuration	LR						

Approach	EB	WB	Northbound			Southbound		
Movement	1	4	7		9	10	11	12
Lane Config		LT		LR				
v (vph)		3		60				
C (m) (vph)		1145		458				
v/c		0.00		0.13				
95\% queue length		0.01		0.45				
Control Delay		8.2		14.0				
LOS		A		B				
Approach Delay				14.0				
Approach LOS				B				

HCS2000: Unsignalized Intersections Release 4.1f
\qquad TWO-WAY STOP CONTROL SUMMARY \qquad
Analyst:
Agency/Co.: TENW
Date Performed: 8/3/2007
Analysis Time Period: PM Peak
Intersection: \#2 - SR 970/Red Bridge Road
Jurisdiction: WSDOT/City of Cle Elum
Units: U. S. Customary
Analysis Year: 2007 Existing
Project ID: Gleason Properties
East/West Street: Red Bridge Rd
North/South Street: SR 970
Intersection Orientation: EW Study period (hrs): 0.25

Major Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	Eastbound			Westbound		
	1	2	3	4	5	6
	L	T	R	L	T	R
Volume	7	172	2	3	157	0
Peak-Hour Factor, PHF	0.89	0.89	0.89	0.89	0.89	0.89
Hourly Flow Rate, HFR	7	193	2	3	176	0
Percent Heavy Vehicles	0	--	--	0	--	--
Median Type/Storage	Undivided					

RT Channelized?

Upstream Signal? No No

Minor Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	Northbound			Southbound			
	7	8	9	10	11	12	
	L	T	R	L	T	R	
Volume	1	2	0	0	0	10	
Peak Hour Factor, PHF	0.89	0.89	0.89	0.89	0.89	0.89	
Hourly Flow Rate, HFR	1	2	0	0	0	11	
Percent Heavy Vehicles	0	0	0	0	0	0	
Percent Grade (\%)		0			0		
Flared Approach: Exists?/Storage			No	/		No	/
Lanes Configuration	0	1	0	0	1	0	
		LTR			LTR		

Approach	EB	WB	Northbound			Southbound		
Movement	1	4	7		9	10	11	12
Lane Config	LTR	LTR		LTR			LTR	
v (vph)	7	3		3			11	
C (m) (vph)	1412	1390		548			872	
v/c	0.00	0.00		0.01			0.01	
95\% queue length	0.01	0.01		0.02			0.04	
Control Delay	7.6	7.6		11.6			9.2	
LOS	A	A		B			A	
Approach Delay				11.6			9.2	
Approach LOS				B			A	

HCS2000: Unsignalized Intersections Release 4.1f

Analyst:	JGT	
Agency/Co.:	TENW	
Date Performed:	8/3/2007	
Analysis Time Period:	PM Peak	
Intersection:	\#2 - SR 970/Red Bridge	
Jurisdiction:	WSDOT/City of Cle Elum	
Units: U. S. Customary		
Analysis Year:	2027 Without Project	
Project ID: Gleason P	Properties	
East/West Street:	Red Bridge	
North/South Street:	SR 970	
Intersection Orientati	- ${ }^{\text {a }}$: EW	Study period (hrs) :

Major Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	${ }_{1} \begin{gathered}\text { Eastbound } \\ \\ 2\end{gathered}$			Westbound		
				4	5	6
	L	T	R	L	T	R
Volume	11	271	3	5	248	0
Peak-Hour Factor, PHF	0.89	0.89	0.89	0.89	0.89	0.89
Hourly Flow Rate, HFR	12	304	3	5	278	0
Percent Heavy Vehicles	0	--	--	0	--	--
Median Type/Storage	Undivided			/		
RT Channelized?						
Lanes	01		0	0	1	
Configuration	LTR			LTR		
Upstream Signal?	No			No		

Minor Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	Northbound			Southbound			
	7	8	9	10	11	12	
	L	T	R	L	T	R	
Volume	2	3	0	0	0	16	
Peak Hour Factor, PHF	0.89	0.89	0.89	0.89	0.89	0.89	
Hourly Flow Rate, HFR	2	3	0	0	0	17	
Percent Heavy Vehicles	0	0	0	0	0	0	
Percent Grade (\%)		0			0		
Flared Approach: Exists	torage		No	/		No	/
Lanes	0	1	0	0	1	0	
Configuration		LTR			LTR		

Approach	EB	WB	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Config	LTR	LTR		LTR			LTR	
v (vph)	12	5		5			17	
C (m) (vph)	1296	1265		395			766	
v/c	0.01	0.00		0.01			0.02	
95\% queue length	0.03	0.01		0.04			0.07	
Control Delay	7.8	7.9		14.2			9.8	
LOS	A	A		B			A	
Approach Delay				14.2			9.8	
Approach LOS				B			A	

HCS2000: Unsignalized Intersections Release 4.1f

Analyst:	JGT
Agency/Co.:	TENW
Date Performed:	8/3/2007
Analysis Time Period:	PM Peak
Intersection:	\#2 - SR 970/Red Bridge
Jurisdiction:	WSDOT/City of Cle Elum
Units: U. S. Customary	
Analysis Year: 2027 With Project	
Project ID: Gleason Properties	
East/West Street:	Red Bridge Rd
North/South Street: SR 970	
Intersection Orientation: EW	

Major Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	${ }_{1}$ Eastbound ${ }^{\text {a }}$			Westbound		
				4	5	6
	L	T	R	L	T	R
Volume	43	271	3	5	248	0
Peak-Hour Factor, PHF	0.89	0.89	0.89	0.89	0.89	0.89
Hourly Flow Rate, HFR	48	304	3	5	278	0
Percent Heavy Vehicles	0	--	--	0	--	--
Median Type/Storage	Undivided			/		
RT Channelized?						
Lanes	01		0	01		
Configuration	LTR			LTR		
Upstream Signal?	No			No		

Minor Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	Northbound			Southbound			
	7		9	10	11	12	
	L	T	R	L	T	R	
Volume	2	3	0	0	0	35	
Peak Hour Factor, PHF	0.89	0.89	0.89	0.89	0.89	0.89	
Hourly Flow Rate, HFR	2	3	0	0	0	39	
Percent Heavy Vehicles	0	0	0	0	0	0	
Percent Grade (\%)		0			0		
Flared Approach: Exists?/Storage			No	/		No	/
Lanes	0	1	0	0		0	
Configuration		LTR			LTR		

Approach	EB	WB	Northbound			Southbound		
Movement	1	4	7		9	10	11	12
Lane Config	LTR	LTR		LTR			LTR	
v (vph)	48	5		5			39	
C (m) (vph)	1296	1265		339			766	
v/c	0.04	0.00		0.01			0.05	
95\% queue length	0.12	0.01		0.04			0.16	
Control Delay	7.9	7.9		14.8			10.0	
LOS	A	A		C			A	
Approach Delay				14.8			10.0	
Approach LOS				C			A	

```
HCS2000: Unsignalized Intersections Release 4.1f
__TWO-WAY STOP CONTROL SUMMARY
```

\qquad

```
Analyst:
Agency/Co.: TENW
Date Performed: 8/3/2007
Analysis Time Period: PM Peak
Intersection: \#3 - SR 970 / Teanaway Rd
Jurisdiction: WSDOT/Cle Elum
Units: U. S. Customary
Analysis Year: 2007 Existing
Project ID: Gleason Properties
East/West Street: SR 970
North/South Street: Teanaway Rd
Intersection Orientation: EW Study period (hrs): 0.25
```

Major Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	${ }_{1}$ Eastbound ${ }^{\text {a }}$			Westbound		
				4	5	6
	L	T	R	L	T	R
Volume	17	175			145	5
Peak-Hour Factor, PHF	0.93	0.9			0.93	0.93
Hourly Flow Rate, HFR	18	188			155	5
Percent Heavy Vehicles	15	--	--		--	--
Median Type/Storage	Undivided		/			
RT Channelized?						
Lanes	1	1		1		
Configuration	L T			TR		
Upstream Signal?	No			No		

Approach	EB	WB	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Config	L						LR	
v (vph)	18						17	
C (m) (vph)	1344						1264	
v/c	0.01						0.01	
95\% queue length	0.04						0.04	
Control Delay	7.7						9.6	
LOS	A						A	
Approach Delay							9.6	
Approach LOS							A	

```
HCS2000: Unsignalized Intersections Release 4.1f
```

\qquad TWO-WAY STOP CONTROL SUMMARY \qquad

Analyst:	JGT
Agency/Co.:	TENW

Date Performed: 8/3/2007
Analysis Time Period: PM Peak
Intersection: \#3 - SR 970 / Teanaway Rd
Jurisdiction: WSDOT/Cle Elum
Units: U. S. Customary
Analysis Year: 2027 Without Project
Project ID: Gleason Properties
East/West Street: SR 970
North/South Street: Teanaway Rd
Intersection Orientation: EW Study period (hrs): 0.25

Major Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	Eastbound			Westbound		
	1	2	3	4	5	6
	L	T	R	L	T	R
Volume	27	276			229	8
Peak-Hour Factor, PHF	0.93	0.93			0.93	0.93
Hourly flow Rate, HFR	29	296			246	8
Percent Heavy Vehicles	15	--	--		--	--
Median Type/Storage	Undivided		1			
RT Channelized?						
Lanes	1	1			1	
Configuration		T				
Upstream Signal?		No		No		

Approach	EB	WB	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Config	L						LR	
v (vph)	29						28	
C (m) (vph)	1239						1110	
v/c	0.02						0.03	
95\% queue length	0.07						0.08	
Control Delay	8.0						10.6	
LOS	A						B	
Approach Delay							10.6	
Approach LOS							B	

HCS2000: Unsignalized Intersections Release 4.1f
\qquad TWO-WAY STOP CONTROL SUMMARY \qquad

Analyst:	JGT
Agency/Co.:	TENW

Date Performed: 8/3/2007
Analysis Time Period: PM Peak
Intersection: \#3 - SR 970 / Teanaway Rd
Jurisdiction: WSDOT/Cle Elum
Units: U. S. Customary
Analysis Year: 2027 With Project
Project ID: Gleason Properties
East/West Street: SR 970
North/South Street: Teanaway Rd
Intersection Orientation: EW Study period (hrs): 0.25

Major Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	1 Eastbound 3			Westbound		
				4		6
	L	T	R	L	T	R
Volume	27	276			229	16
Peak-Hour Factor, PHF	0.93	0.93			0.93	0.93
Hourly Flow Rate, HFR	29	296			246	17
Percent Heavy Vehicles	15	--	--		--	--
Median Type/Storage	Undivided		/			
RT Channelized?						
Lanes	1	1			1	
Configuration		T		TR		
Upstream Signal?		No		No		

Approach	EB	WB	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Config	L						LR	
v (vph)	29						33	
C (m) (vph)	1229						1142	
v/c	0.02						0.03	
95\% queue length	0.07						0.09	
Control Delay	8.0						11.1	
LOS	A						B	
Approach Delay							11.1	
Approach LOS							B	

HCS2000: Unsignalized Intersections Release 4.1f
\qquad
\qquad

Analyst:	MJR	
Agency/Co.:	TENW	
Date Performed:	$10 / 17 / 2007$	
Analysis Time Period:	PM Peak	
Intersection:	Teanaway/Red Bridge Road	
Jurisdiction:	Kittitas	
Units: U. S. Customary		
Analysis Year:	2007 Existing	
Project ID: Gleason Properties		
East/West Street:	Red Bridge	
North/South Street: \quad Teanaway Road		
Intersection Orientation: EW	Study period (hrs): 0.25	

Major Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	Eastbound				Westbound	
	1	2	3	4	5	6
	L	T	R	L	T	R
Volume	1	0	5			
Peak-Hour Factor, PHF	0.90	0.90	0.			
Hourly Flow Rate, HFR	1	0	5			
Percent Heavy Vehicles	0	--	--		--	--
Median Type/Storage	Undivided			/		
RT Channelized?						
Lanes	0	0	0			
Configuration	LTRLR					
Upstream Signal?	No			No		

Minor Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	Northbound			Southbound			
	7	8	9	10	11	12	
	L	T	R	L	T	R	
Volume	6	14			10	2	
Peak Hour Factor, PHF	0.90	0.90			0.90	0.90	
Hourly Flow Rate, HFR	6	15			11	2	
Percent Heavy Vehicles	0	0			0	0	
Percent Grade (\%)		0			0		
Flared Approach: Exists	torage					No	/
Lanes	0	1			1	0	
Configuration						TR	

Approach	EB	WB	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Config	LTR		LT					TR
v (vph)	1		21					13
C (m) (vph)	1636		923					917
v/c	0.00		0.02					0.01
95\% queue length	0.00		0.07					0.04
Control Delay	7.2		9.0					9.0
LOS	A		A					A
Approach Delay				9.0			9.0	
Approach LOS				A			A	

HCS2000: Unsignalized Intersections Release 4.1f
\qquad
\qquad

Analyst:	MJR	
Agency/Co.:	TENW	
Date Performed:	$10 / 17 / 2007$	
Analysis Time Period:	PM Peak	
Intersection:	Teanaway/Red Bridge Road	
Jurisdiction:	Kittitas	
Units: U. S. Customary		
Analysis Year:	2027 Baseline	
Project ID: Gleason Properties		
East/West Street:	Red Bridge	
North/South Street: Teanaway Road		
Intersection Orientation: EW	Study period (hrs): 0.25	

Major Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	Eastbound				Westbound	
	1	2	3	4	5	6
	L	T	R	L	T	R
Volume	2	0	7			
Peak-Hour Factor, PHF	0.90	0.90	0.			
Hourly Flow Rate, HFR	2	0	7			
Percent Heavy Vehicles	0	--	--		--	--
Median Type/Storage	Undiv	ded		/		
RT Channelized?						
Lanes						
Configuration	LTRLR					
Upstream Signal?		No		No		

Minor Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	Northbound			Southbound			
	7	8	9	10	11	12	
	L	T	R	L	T	R	
Volume	9	22			16	3	
Peak Hour Factor, PHF	0.90	0.90			0.90	0.90	
Hourly Flow Rate, HFR	10	24			17	3	
Percent Heavy Vehicles	0	0			0	0	
Percent Grade (\%)		0			0		
Flared Approach: Exists	torage					No	/
Lanes	0	1			1	0	
Configuration						TR	

Approach	EB	WB	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Config	LTR		LT					TR
v (vph)	2		34					20
C (m) (vph)	1636		915					913
v/c	0.00		0.04					0.02
95\% queue length	0.00		0.12					0.07
Control Delay	7.2		9.1					9.0
LOS	A		A					A
Approach Delay				9.1			9.0	
Approach LOS				A			A	

HCS2000: Unsignalized Intersections Release 4.1f
\qquad
\qquad

Analyst:	MJR	
Agency/Co.:	TENW	
Date Performed:	$10 / 17 / 2007$	
Analysis Time Period:	PM Peak	
Intersection:	Teanaway/Red Bridge Road	
Jurisdiction:	Kittitas	
Units: U. S. Customary		
Analysis Year:	2027 with Projects	
Project ID: Gleason Properties		
East/West Street:	Red Bridge	
North/South Street: Teanaway Road		
Intersection Orientation: EW	Study period (hrs): 0.25	

Major Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	Eastbound				Westbound	
	1	2	3	4	5	6
	L	T	R	L	T	R
Volume	2	0	12			
Peak-Hour Factor, PHF	0.90	0.90	0.			
Hourly Flow Rate, HFR	2	0	13			
Percent Heavy Vehicles	0	--	--		--	--
Median Type/Storage	Undiv	ded		/		
RT Channelized?						
Lanes						
Configuration	LTRLR					
Upstream Signal?		No		No		

Minor Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	Northbound			Southbound			
	7	8	9	10	11	12	
	L	T	R	L	T	R	
Volume	17	22			16	3	
Peak Hour Factor, PHF	0.90	0.90			0.90	0.90	
Hourly Flow Rate, HFR	18	24			17	3	
Percent Heavy Vehicles	0	0			0	0	
Percent Grade (\%)		0			0		
Flared Approach: Exists	torage					No	/
Lanes	0	1			1	0	
Configuration						TR	

Approach	EB	WB	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Config	LTR		LT					TR
v (vph)	2		42					20
C (m) (vph)	1636		925					906
v/c	0.00		0.05					0.02
95\% queue length	0.00		0.14					0.07
Control Delay	7.2		9.1					9.1
LOS	A		A					A
Approach Delay				9.			9.1	
Approach LOS				A			A	

```
HCS2000: Unsignalized Intersections Release 4.1f
```

\qquad TWO-WAY STOP CONTROL SUMMARY \qquad

Analyst:	MJR	
Agency/Co.:	TENW	
Date Performed:	$10 / 17 / 2007$	
Analysis Time Period:	PM Peak	
Intersection:	Red Bridge Rd/Masterson Road	
Jurisdiction:	Kittitas	
Units: U. S. Customary		
Analysis Year:	2007 Existing	
Project ID: Gleason Properties		
East/West Street:	Red Bridge Road	
North/South Street: Masterson		
Intersection Orientation: EW	Study period (hrs): 0.25	

Approach	EB	WB	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Config	LT						LR	
v (vph)	2						2	
C (m) (vph)	1621						1077	
v/c	0.00						0.00	
95\% queue length	0.00						0.01	
Control Delay	7.2						8.3	
LOS	A						A	
Approach Delay							8.3	
Approach LOS							A	

```
HCS2000: Unsignalized Intersections Release 4.1f
_ TWO-WAY STOP CONTROL SUMMARY
```

\qquad

```
\begin{tabular}{ll} 
Analyst: & MJR \\
Agency/Co.: & TENW
\end{tabular}
Date Performed: 10/17/2007
Analysis Time Period: PM Peak
Intersection: Red Bridge Rd/Masterson Road
Jurisdiction: Kittitas
Units: U. S. Customary
Analysis Year: 2027 Baseline
Project ID: Gleason Properties
East/West Street: Red Bridge Road
North/South Street: Masterson
Intersection Orientation: EW Study period (hrs): 0.25
```


Minor Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	Northbound			Southbound			
	7	8	9	10	11	12	
	L	T	R	L	T	R	
Volume				0		2	
Peak Hour Factor, PHF				0.90			
Hourly Flow Rate, HFR				0		2	
Percent Heavy Vehicles				0		0	
Percent Grade (\%) 0					0		
Flared Approach: Exists?/Storage				1		No	1
Lanes				0		0	
Configuration					LR		

Approach	EB	WB	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Config	LT						LR	
v (vph)	3						2	
C (m) (vph)	1613						106	
v/c	0.00						0.0	
95\% queue length	0.01						0.0	
Control Delay	7.2						8.4	
LOS	A						A	
Approach Delay							8.4	
Approach LOS							A	

HCS2000: Unsignalized Intersections Release 4.1f
\qquad TWO-WAY STOP CONTROL SUMMARY \qquad

Analyst:	MJR	
Agency/Co.:	TENW	
Date Performed:	$10 / 17 / 2007$	
Analysis Time Period:	PM Peak	
Intersection:	Red Bridge Rd/Masterson Road	
Jurisdiction:	Kittitas	
Units: U. S. Customary		
Analysis Year:	2027 with Projects	
Project ID: Gleason Properties		
East/West Street:	Red Bridge Road	
North/South Street: Masterson		
Intersection Orientation: EW	Study period (hrs): 0.25	

Minor Street:	Approach Movement	Northbound			Southbound						
		7	8	9		10		11	12		
		L	T	R		L		T	R		
Volume					0				2		
Peak Hour Factor, PHF						0.90			0.90		
Hourly Flow Rate, HFR						0			2		
Percent Heavy Vehicles						0			0		
Percent Grade (\%)			0					0			
Flared Approach:	: Exists?/Storage				1				No	/	
Lanes							0				0
Configuration									LR		

Approach	EB	WB	Northbound			Southbound		
Movement	1	4	7	8	9	10	11	12
Lane Config	LT						LR	
v (vph)	3						2	
C (m) (vph)	1585						1041	
v/c	0.00						0.00	
95\% queue length	0.01						0.01	
Control Delay	7.3						8.5	
LOS	A						A	
Approach Delay							8.5	
Approach LOS							A	

```
HCS2000: Unsignalized Intersections Release 4.1f
_ TWO-WAY STOP CONTROL SUMMARY
```

\qquad

```
Analyst:
Agency/Co.: TENW
Date Performed: 8/3/2007
Analysis Time Period: PM Peak
Intersection: \#6 - Red Bridge Rd / West Dr
Jurisdiction: Cle Elum
Units: U. S. Customary
Analysis Year: 2027 with Projects
Project ID: Gleason Properties
East/West Street: Red Bridge Rd
North/South Street: East Site Dr
Intersection Orientation: EW Study period (hrs): 0.25
```

Major Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	$1 \begin{aligned} & \text { Eastbound } \\ & 1\end{aligned}$		Westbound		
			4	5	6
	L T	R	L	T	R
Volume	240	17	4	233	
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	
Hourly Flow Rate, HFR	266	18	4	258	
Percent Heavy Vehicles	--	--	2	--	--
Median Type/Storage	Undivided		1		
RT Channelized?					
Lanes	1		0	1	
Configuration					
Upstream Signal?	No			No	

Minor Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	Northbound			Southbound		
	7	8	9	10	11	12
	L	T	R	L	T	R
Volume	10		2			
Peak Hour Factor, PHF	0.90		0.90			
Hourly Flow Rate, HFR	11		2			
Percent Heavy Vehicles	2		2			
Percent Grade (\%)		0			0	
Flared Approach: Exists?	orage		No	/		/
Lanes	0		0			
Configuration		LR				

Approach	EB	WB	Northbound			Southbound		
Movement	1	4	7		9	10	11	12
Lane Config		LT		LR				
v (vph)		4		13				
C (m) (vph)		1278		528				
v/c		0.00		0.02				
95\% queue length		0.01		0.08				
Control Delay		7.8		12.0				
LOS		A		B				
Approach Delay				12.0				
Approach LOS				B				

```
HCS2000: Unsignalized Intersections Release 4.1f
_ TWO-WAY STOP CONTROL SUMMARY
```

\qquad

```
Analyst:
Agency/Co.: TENW
Date Performed: 8/3/2007
Analysis Time Period: PM Peak
Intersection: \#7 - Red Bridge Rd / West Dr
Jurisdiction: Cle Elum
Units: U. S. Customary
Analysis Year: 2027 With Projects
Project ID: Gleason Properties
East/West Street: Red Bridge Rd
North/South Street: West Site Dr
Intersection Orientation: EW Study period (hrs): 0.25
```

Major Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	${ }_{1} \begin{gathered}\text { Eastbound } \\ \\ 2\end{gathered}$		Westbound		
			4	5	6
	L T	R	L	T	R
Volume	255	17	4	238	
Peak-Hour Factor, PHF	0.90	0.90	0.90	0.90	
Hourly Flow Rate, HFR	283	18	4	264	
Percent Heavy Vehicles	--	--	2	--	--
Median Type/Storage	Undivided		1		
RT Channelized?					
Lanes	1		0	1	
Configuration					
Upstream Signal?	No			No	

Minor Street: $\begin{aligned} & \text { Approach } \\ & \text { Movement }\end{aligned}$	Northbound			Southbound		
	7	8	9	10	11	12
	L	T	R	L	T	R
Volume	10		2			
Peak Hour Factor, PHF	0.90		0.90			
Hourly Flow Rate, HFR	11		2			
Percent Heavy Vehicles	2		2			
Percent Grade (\%)		0			0	
Flared Approach: Exists?	orage		No	/		/
Lanes	0		0			
Configuration		LR				

Approach	EB	WB	Northbound			Southbound		
Movement	1	4	7		9	10	11	12
Lane Config		LT		LR				
v (vph)		4		13				
C (m) (vph)		1260		513				
v/c		0.00		0.03				
95\% queue length		0.01		0.08				
Control Delay		7.9		12.2				
LOS		A		B				
Approach Delay				12.2				
Approach LOS				B				

A ppendix C
 Future Traffic V olume Estimates

(1) Transportation Engineering N orthW est, LLC

Red Bridge Road Subdivision
2027 PM Peak Hour Turning Movement Volumes

